

Python programming: An overview
Ali Dariush (Institute of Astronomy, University of Cambridge)
Cambridge International School (August 2016)

Computer program
A computer program (computer code) is a detailed set of
instructions that tells a computer what to do with the
data which is stored on a computer.

Python is a scripting language (not a compiled language)

Python environments

• IPython

• IPython notebook

• Anaconda

• Komodo Edit (or any other text editor)

 Web Resources
Python software foundation

https://www.python.org/doc/

Tutorial points (almost everything including Python)

http://www.tutorialspoint.com

Stack overflow (Q&A supported by Python user
community)

http://stackoverflow.com

https://www.python.org/doc/
http://www.tutorialspoint.com/
http://stackoverflow.com/

Anaconda

Anaconda

Text editor

Variable
Explorer

Console

Math
Comparison operators
== Equal to

!= Not equal to

< Less than

> Greater than

<= Less than or equal to

>= Greater than or equal to

Practice:
>>> 8 < 13 True

>>> 2 <= 1 False

>>> 13 > 12 True

>>> 12 != 13 True

>>> False < True True

Math
Operators

Addition +

Subtraction -

Division /

Multiplication *

Practice:
>>> 4 + 12

>>> 15 - 3

>>> 9 + 6 – 15 + 12

>>> 2 * 15

>>> 16 / 4

>>> 15 // 4

>>> 16.0 / 4.0

>>> 15.0 / 4.0

>>> 15.0 // 4.0

Variables

&

Data types

Variables & Data types
Variables
 You can assign a name (variable) to a value (with a specific data type) once, but keep the

result to use later.

 You can keep the same name for a variable, but change the value.

Data types (example)
“Cambridge” string

345 integer

3.14 float

True boolean → more details in next slides

[1,2,3.4,”film”] list → more details in next slides

Python tells us about types using the type() function:

>>> name = 'ali'

>>> a = 4

>>> b = 6.5

>>> print type(name) , type(a) , type(b)

<type 'str'> <type 'int'> <type 'float'>

String
String operators
+ Concatenation

* Multiplication

Practice:
>>> ali

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

NameError: name 'ali' is not defined

>>> 'ali'

'ali'

>>> "ali"

'ali'

>>> 'ali' + '@Cambridge'

'ali@Cambridge'

>>> " ali "*4

' ali ali ali ali '

Data type: List
List
A list is a sequence of objects

>>> FootballTeams = [“Wales”, “Iceland”, “Brazil”, “Germany”]

>>> WorldRank = [65, 89, 5, 2]

Guess the output of the following commands:

>>> type(FootballTeams)

>>> type(WorldRank)

Data type: List
List
A list is a sequence of objects

>>> FootballTeams = [“Wales”, “Iceland”, “Brazil”, “Germany”]

>>> WorldRank = [65, 89, 5, 2]

Guess the output of the following commands:

>>> type(FootballTeams)

<type 'list'>

>>> type(WorldRank)

<type 'list'>

Data type: List
List
Index: Where an item is in the list
>>> Beatles = [“John”, “Paul”, “George”, “Ringo”]

>>> Beatles[0]

‘John‘

[“John”, “Paul”, “George”, “Ringo”]

0 1 2 3

Python always starts at zero!

Data type: Booleans
Booleans
Q: What happens when we type Boolean values in the interpreter?

When the words ‘True’ and ‘False’ begin with upper case letters, Python knows to
treat them like Booleans instead of strings or integers.

Try this:

>>> True

>>> False

>>> true

>>> false

>>> type(True)

>>> type(“True”)

Data type: Booleans
Booleans(and , or, not)

not
You can use the word not to reverse the answer that Python gives:

Any expression that is True can become False:

>>> 1==1

True

>>> not 1==1

False

>>> not True

False

bool1 bool1 and or

True True True True

True False False True

False False False False

Data type: Booleans
Booleans(and , or, not)

Try this:
>>> True and True

>>> True and False

>>> False and False

>>> True or True

>>> False or True

>>> False or False

>>> not True and True

>>> not True or True

bool1 bool1 and or

True True True True

True False False True

False False False False

Logic

&

Loops

Logic
if Statement
Making decisions:

if a condition is met:

 perform an action

Example:

“If you’re Tired, let’s rest.”

“If you like Football, let’s play!”

Try this:

>>> Tired = True

>>> if Tired: print "Let's have a rest"

...

Let's have a rest

>>> game = 'Basketball'

>>> if game != 'Football': print "I do not want to play this game!"

...

I do not want to play this game!

Logic
if Statement

Adding a choice:

Adding a choice in our code
with the else clause:

“If you’re hungry, let’s eat lunch. Or else we can eat in an hour.”

“If you like Frisbee, let’s play! Or else we can play rugby.”

Try this:
>>> city = "Cambridge"

>>> if city == "Oxford": print "county is Oxfordshire"

... else: print "county is Cambridgeshire"

...

county is Cambridgeshire

Logic
if Statement

Adding many choices:

Adding more choices in our code with the elif clause:

“If you’re hungry, let’s eat lunch. Or else we can eat in an hour. Or else we

Can go home, or else ...”

Example

>>> if name == “Sara”

print “Hi Sara!”

 elif name == “Mary”:

print “Hi Mary!”

 else:

print “Who are you ?”

Loops
Loops
Loops are chunks of code that repeat a task over and over again.

 Counting loops repeat a certain number of times.

 Conditional loops keep going until a certain

thing happens (or as long as some condition is True).

There are two types of loops in Python:

for and while loops

Loops
Loops (for)
Counting loops repeat a certain number of times – they keep going until they

get to the end of a count.

>>> for mynum in [1, 2, 3, 4, 5]:

 print "Hello", mynum

Hello 1

Hello 2

Hello 3

Hello 4

Hello 5

The for keyword is used to create this kind of loop, so it is usually just
called a for loop.

Loops
Loops (while)
Conditional loops repeat until something happens

(or as long as some condition is True).

>>> count = 0

>>> while (count < 4):

 print 'The count is:', count

 count = count + 1

The count is: 0

The count is: 1

The count is: 2

The count is: 3

The while keyword is used to create this kind of loop, so it is usually just
called a while loop.

Loops
Loops (while)
Conditional loops repeat until something happens

(or as long as some condition is True).

>>> count = 0

>>> while (count < 4):

 print 'The count is:', count

 count = count + 1

The count is: 0

The count is: 1

The count is: 2

The count is: 3

The while keyword is used to create this kind of loop, so it is usually just
called a while loop.

Algorithm

&

Functions

Algorithm & Functions
Algorithm
A set of instructions in order to perform a task or solve a problem.

How to make a cup of tea?
Get a flavour of tea bag.

Get a kettle.

Get a tea-pot.

Get a pot of water.

Make sure the kettle is plugged in…

…and on, and on, and on.

But to a human, it’s just “make a cup of tea”.

Algorithm & Functions
functions
Functions are just a concise way to group instructions into a bundle.

What it's like in our minds:

 “Make a cup of tea.”  bundle

In Python, you could say it like this:

 make_tea(tea_bag, tea_pot, tea_cup, water, kettle)

 function name function parameters

How to define a function in Python?
 Functions are defined using def.

 Functions are called using parentheses ().

 Functions take parameters (inputs) and return results (outputs) using return keyword.

 print displays information, but does not give a value.

 return gives a value to the caller.

Algorithm & Functions
functions
Functions are just a concise way to group instructions into a bundle.

What it's like in our minds:

 “Make a cup of tea.”  bundle

In Python, you could say it like this:

 make_tea(tea_bag, tea_pot, tea_cup, water, kettle)

 function name function parameters

How to define a function in Python?
 Functions are defined using def.

 Functions are called using parentheses ().

 Functions take parameters (inputs) and return results (outputs) using return keyword.

 print displays information, but does not give a value.

 return gives a value to the caller.

Example
>>> def calculate_sum(value1, value2):
... return value1 + value2
...
>>> calculate_sum(85 , 95)
180

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

